192 research outputs found

    Production Technology and Competitiveness In the Hungarian Manufacturing Industry

    Get PDF
    Following the big transformations of the 1990s, enterprise structure and technological level seem to have become stabilised in Hungary. Under these circumstances it is especially interesting to identify the elements responsible for competitiveness in general, and the role technology plays in development in particular, according to managers experienced in production and marketing. This empirical study – based on in-depth interviews and field research – summarises characteristics of the technological level in the sectors examined, role of technology and labour in production, effects of foreign direct investment, relations between competition and firm-level factors determining competitiveness, and concludes by summing up those most frequently mentioned proposals that should be incorporated into economic policy according to managers. Main findings indicate that more qualified, more intensive and cheaper labour can be substituted for high technology. The competitiveness of an enterprise is not determined by technology alone, but rather by a combination of technology, the parameters of available labour and the costs of investment increasing productivity. The insufficiency of inter-company relations, together with a shortage of available assets necessary for investment constitute the major threat undermining the competitiveness of enterprises in present-day Hungary

    Clever-1/Stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation

    Get PDF
    Clever-1/Stabilin-1 is a scavenger receptor present on lymphatic and sinusoidal endothelium as well as on a subset of type II macrophages. It is also induced on vasculature at sites of inflammation. However, its in vivo function has remained practically unknown and this work addresses those unknown aspects. We demonstrate using in vivo models that Clever-1/Stabilin-1 mediates migration of T and B lymphocytes to the draining lymph nodes in vivo and identify the adhesive epitope of the Clever-1/Stabilin-1 molecule responsible for the interaction between lymphocytes and lymphatic endothelium. Moreover, we demonstrate that Ab blocking of Clever-1/Stabilin-1 efficiently inhibits peritonitis in mice by decreasing the entrance of granulocytes by 50%, while migration of monocytes and lymphocytes into the inflamed peritoneum is prevented almost completely. Despite efficient anti-inflammatory activity the Ab therapy does not dramatically dampen immune responses against the bacterial and foreign protein Ag tested and bacterial clearance. These results indicate that anti-Clever-1/Stabilin-1 treatment can target two different arms of the vasculature - traffic via lymphatics and inflamed blood vessels.</p

    A comparison of genomic profiles of complex diseases under different models

    Get PDF
    Background: Various approaches are being used to predict individual risk to polygenic diseases from data provided by genome-wide association studies. As there are substantial differences between the diseases investigated, the data sets used and the way they are tested, it is difficult to assess which models are more suitable for this task. Results: We compared different approaches for seven complex diseases provided by the Wellcome Trust Case Control Consortium (WTCCC) under a within-study validation approach. Risk models were inferred using a variety of learning machines and assumptions about the underlying genetic model, including a haplotype-based approach with different haplotype lengths and different thresholds in association levels to choose loci as part of the predictive model. In accordance with previous work, our results generally showed low accuracy considering disease heritability and population prevalence. However, the boosting algorithm returned a predictive area under the ROC curve (AUC) of 0.8805 for Type 1 diabetes (T1D) and 0.8087 for rheumatoid arthritis, both clearly over the AUC obtained by other approaches and over 0.75, which is the minimum required for a disease to be successfully tested on a sample at risk, which means that boosting is a promising approach. Its good performance seems to be related to its robustness to redundant data, as in the case of genome-wide data sets due to linkage disequilibrium. Conclusions: In view of our results, the boosting approach may be suitable for modeling individual predisposition to Type 1 diabetes and rheumatoid arthritis based on genome-wide data and should be considered for more in-depth research.This work was supported by the Spanish Secretary of Research, Development and Innovation [TIN2010-20900-C04-1]; the Spanish Health Institute Carlos III [PI13/02714]and [PI13/01527] and the Andalusian Research Program under project P08-TIC-03717 with the help of the European Regional Development Fund (ERDF). The authors are very grateful to the reviewers, as they believe that their comments have helped to substantially improve the quality of the paper

    Search for intracranial aneurysm susceptibility gene(s) using Finnish families

    Get PDF
    BACKGROUND: Cerebrovascular disease is the third leading cause of death in the United States, and about one-fourth of cerebrovascular deaths are attributed to ruptured intracranial aneurysms (IA). Epidemiological evidence suggests that IAs cluster in families, and are therefore probably genetic. Identification of individuals at risk for developing IAs by genetic tests will allow concentration of diagnostic imaging on high-risk individuals. We used model-free linkage analysis based on allele sharing with a two-stage design for a genome-wide scan to identify chromosomal regions that may harbor IA loci. METHODS: We previously estimated sibling relative risk in the Finnish population at between 9 and 16, and proceeded with a genome-wide scan for loci predisposing to IA. In 85 Finnish families with two or more affected members, 48 affected sibling pairs (ASPs) were available for our genetic study. Power calculations indicated that 48 ASPs were adequate to identify chromosomal regions likely to harbor predisposing genes and that a liberal stage I lod score threshold of 0.8 provided a reasonable balance between detection of false positive regions and failure to detect real loci with moderate effect. RESULTS: Seven chromosomal regions exceeded the stage I lod score threshold of 0.8 and five exceeded 1.0. The most significant region, on chromosome 19q, had a maximum multipoint lod score (MLS) of 2.6. CONCLUSIONS: Our study provides evidence for the locations of genes predisposing to IA. Further studies are necessary to elucidate the genes and their role in the pathophysiology of IA, and to design genetic tests

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke

    Get PDF
    Asymmetric and symmetric dimethylarginines (ADMA and SDMA) impair nitric oxide bioavailability and have been implicated in the pathogenesis of atrial fibrillation (AF). Alanine-glyoxylate aminotransferase 2 (AGXT2) is the only enzyme capable of metabolizing both of the dimethylarginines. We hypothesized that two functional AGXT2 missense variants (rs37369, V140I; rs16899974, V498L) are associated with AF and its cardioembolic complications. Association analyses were conducted using 1,834 individulas with AF and 7,159 unaffected individuals from two coronary angiography cohorts and a cohort comprising patients undergoing clinical exercise testing. In coronary angiography patients without structural heart disease, the minor A allele of rs16899974 was associated with any AF (OR = 2.07, 95% CI 1.59-2.68), and with paroxysmal AF (OR = 1.98, 95% CI 1.44-2.74) and chronic AF (OR = 2.03, 95% CI 1.35-3.06) separately. We could not replicate the association with AF in the other two cohorts. However, the A allele of rs16899974 was nominally associated with ischemic stroke risk in the meta-analysis of WTCCC2 ischemic stroke cohorts (3,548 cases, 5,972 controls) and with earlier onset of first-ever ischemic stroke (360 cases) in the cohort of clinical exercise test patients. In conclusion, AGXT2 variations may be involved in the pathogenesis of AF and its age-related thromboembolic complications.</p

    Genetic Profiling Using Genome-Wide Significant Coronary Artery Disease Risk Variants Does Not Improve the Prediction of Subclinical Atherosclerosis: The Cardiovascular Risk in Young Finns Study, the Bogalusa Heart Study and the Health 2000 Survey – A Meta-Analysis of Three Independent Studies

    Get PDF
    Background Genome-wide association studies (GWASs) have identified a large number of variants (SNPs) associating with an increased risk of coronary artery disease (CAD). Recently, the CARDIoGRAM consortium published a GWAS based on the largest study population so far. They successfully replicated twelve already known associations and discovered thirteen new SNPs associating with CAD. We examined whether the genetic profiling of these variants improves prediction of subclinical atherosclerosis – i.e., carotid intima-media thickness (CIMT) and carotid artery elasticity (CAE) – beyond classical risk factors. Subjects and Methods We genotyped 24 variants found in a population of European ancestry and measured CIMT and CAE in 2001 and 2007 from 2,081, and 2,015 subjects (aged 30–45 years in 2007) respectively, participating in the Cardiovascular Risk in Young Finns Study (YFS). The Bogalusa Heart Study (BHS; n = 1179) was used as a replication cohort (mean age of 37.5). For additional replication, a sub-sample of 5 SNPs was genotyped for 1,291 individuals aged 46–76 years participating in the Health 2000 population survey. We tested the impact of genetic risk score (GRS24SNP/CAD) calculated as a weighted (by allelic odds ratios for CAD) sum of CAD risk alleles from the studied 24 variants on CIMT, CAE, the incidence of carotid atherosclerosis and the progression of CIMT and CAE during a 6-year follow-up. Results CIMT or CAE did not significantly associate with GRS24SNP/CAD before or after adjusting for classical CAD risk factors (p>0.05 for all) in YFS or in the BHS. CIMT and CAE associated with only one SNP each in the YFS. The findings were not replicated in the replication cohorts. In the meta-analysis CIMT or CAE did not associate with any of the SNPs. Conclusion Genetic profiling, by using known CAD risk variants, should not improve risk stratification for subclinical atherosclerosis beyond conventional risk factors among healthy young adults.Public Library of Science open acces

    Оценка качества образования на основе компетентностного подхода

    Get PDF
    В работе представлен практический опыт оценки качества образования в новом формате компетентностного подход

    Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation

    Get PDF
    Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery
    corecore